
TELEDYNE RELAYS

HIGH REPEATABILITY ULTRAMINIATURE T0-5, RF BYPASS RELAY DC TO 3 GHz

SERIES RF310 RF313

SERIES DESIGNATION	RELAY TYPE	
RF310	Repeatable, RF, N.C. Bypass relay	
RF313	Sensitive, repeatable, RF N.C. Bypass relay	

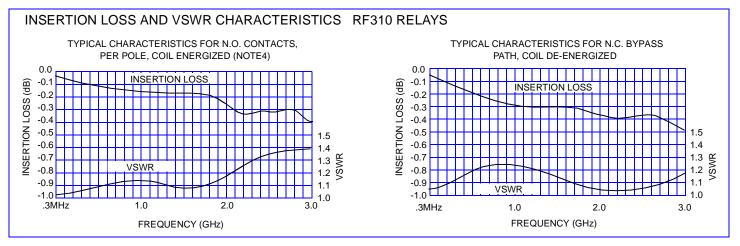
INTERNAL CONSTRUCTION

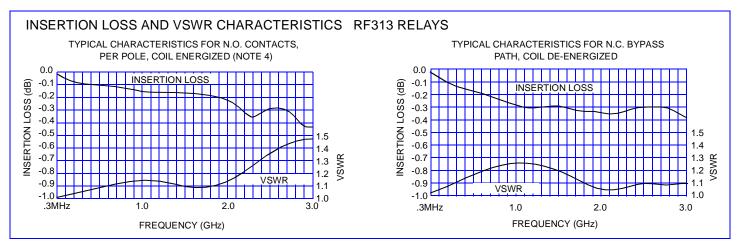
ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS

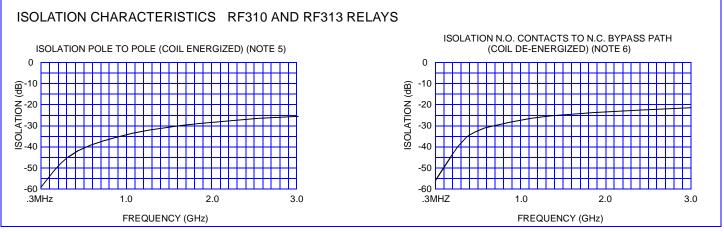
Temperature		-55 °C to +85 °C	
Vibration (General Note 1)		10 G to 500 Hz	
Shock (General Note 1)		30 G, 6 ms. half sine	
Enclosure		Hermetically sealed	
	RF310	0.09 oz. (2.55 g) max.	
Weight	RF313	0.16 oz. (4.50 g) max.	

PERFORMANCE FEATURES

The ultraminiature RF310 and RF313 relays are designed with an internal bypass (through path), when the coil is de-energized, to provide low insertion loss and VSWR through the bypass and simplicity of design for the user. Relays have improved RF insertion loss repeatability over the frequency range from dc to 3 GHz. Highly suitable for use in attenuator, linear amplifier and other RF circuits. The RF310 and RF313 feature:


- N.C. bypass configuration.
- Repeatable insertion loss.
- Broad bandwidth.
- Metal enclosure for EMI shielding.
- Ground pin option to improve case grounding.
- High isolation between control and signal paths.
- High resistance to ESD.

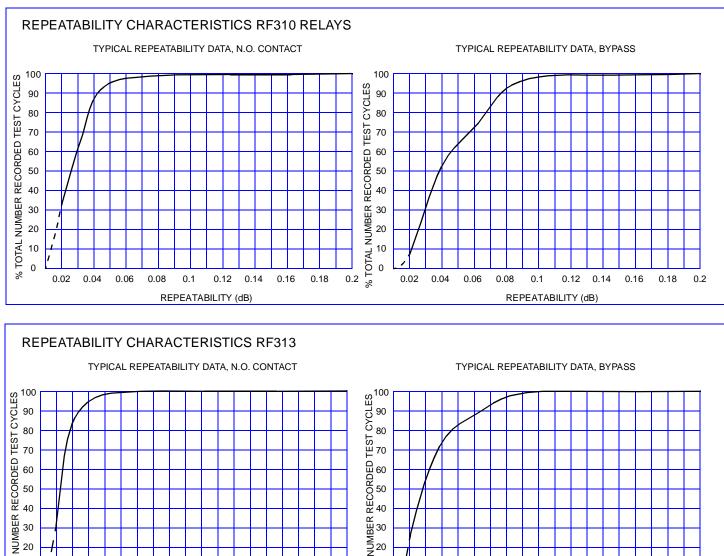

CONSTRUCTION FEATURES

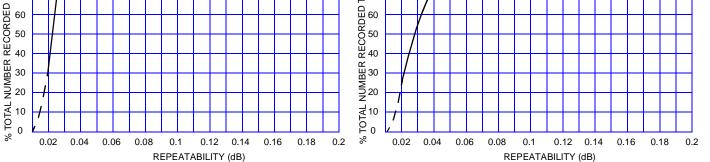

The following unique construction features and manufacturing techniques provide excellent resistance to environmental extremes and overall high reliability.

- Uni-frame motor design provides high magnetic efficiency and mechanical rigidity.
- Minimum mass components and welded construction provide maximum resistance to shock and vibration.
- Advanced cleaning techniques provide maximum assurance of internal cleanliness.
- Gold plated precious metal alloy contacts ensure reliable switching.

SERIES RF310 and RF313 TYPICAL RF CHARACTERISTICS (Notes 1, 2 and 3)

RF Notes:


1. Test conditions: *a*. Fixture: .031" copper clad, reinforced PTFE, duroid 6002[®] with SMA connectors. (Duroid is a registered trademark of Rogers Corporation).


- b. Relays header is not soldered to ground plane or connected to groud via ground pin.
- c. Test performed at room ambient temperature.
- *d*. Terminals not tested were terminated with 50 ohm load.
- e. Contact signal level: 0 dBm.
- 2. Data presented herein represents typical characteristics and is not intended to be used as specification limits.

3. Data is per pole.

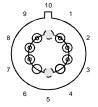
- 4. Measurement points are from pins 2 & 3 to pins 7 & 8.
- 5. Data is the average of both N.O. contacts to the bypass path
- 6. Relays operate at frequencies above 3 GHz with reduced RF performance characteristics.

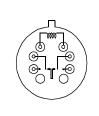
SERIES RF310 and RF313 TYPICAL INSERTION LOSS REPEATABILITY CHARACTERISTICS (Notes 1 and 2)

RF Insertion Loss Repeatability Notes

- 1. Test conditions: a. Fixture: .031" copper clad, reinforced PTFE, duroid 6002[®] with SMA connectors. (Duroid is a registered trademark of Rogers Corporation).
 - b. Relays header is not soldered to ground plane nor connected via ground pin.
 - c. Test performed at room ambient temperature.
 - d. Contact signal level: 0 dBm.
- 2. Data presented herein represents typical characteristics and is not intended to be used as specification limits.
- 3. N.O. path contacts connected in series externally.
- 4. Insertion loss repeatability measured over frequency range from .3 MHz to 3 GHz.

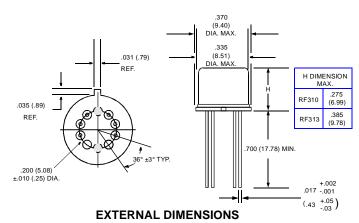
SERIES RF310 and RF313


GENERAL ELECTRICAL SPECIFICATIONS (@25°C)


Contact arrangement		N.C. side (coil de-energized)	N.O. side (coil energized)	
		SPST, Normally Closed Double Break	DPST, Normally Open	
Rated duty		Continuous		
Contact resistance (General note 2	2)	0.15 ohm max. initial (measured 1/8" from the header)		
Contact load rating		Low level: 10 to 50 µA, 10 to 50 mV		
Contact life rating		10,000,000 cycles typical at low level		
Coil operating power		RF310: 450 mW typical @ nominal rated voltage RF313: 200 mW typical @ nominal rated voltage		
Operate time	RF310	4.0 ms. max.		
	RF313	6.0 ms. max.		
Release time	RF310	3.0 ms. max.		
	RF313	3.0 ms. max.		
Intercontact capacitance		0.4 pF typical		
Insulation resistance		1,000 M Ω min. (between mutually isolated terminals)		
Dielectric strength		350 VRMS / 60 Hz @ atmospheric pressure		

DETAILED ELECTRICAL SPECIFICATIONS (@ 25°C)

BASE PART NUMBERS	RF310-5 RF313-5	RF310-12 RF313-12	
Coil voltage, nominal, VDC	5.0	12.0	
Coil resistance, ohms ± 20%	RF310	50	390
Con resistance, onnis ± 20%	RF313	100	850
Pick-up voltage max, VDC		3.6	9.0


OUTLINE DIMENSIONS

TERMINAL NUMBERING

SCHEMATIC

• HEADER DIMENSIONS, TERMINAL NUMBERING AND SCHEMATIC ARE AS VIEWED FROM THE TERMINALS.

- DIMENSIONS ARE IN INCHES (MILLIMETERS).
- POSITIONS 5 AND 10 ARE FOR UNINSULATED CASE GROUND OPTIONS.
- NO PROTRUSION BELOW BOTTOM OF HEADER WHEN GROUND PINS ARE
 INSTALLED IN POSITIONS 5 OR 10.
- SCHEMATIC AND EXTERNAL DIMENSIONS SHOWN WITHOUT GROUND PINS.
- TO ORDER THE CASE GROUND OPTION, AFTER THE SERIES DESIGNATOR, ADD "Y" TO THE PART NUMBER FOR POSITION 5 OR "Z" TO THE PART NUM-BER FOR POSITION 10.

EXAMPLE: RF3##Y-COIL VOLTAGE

GENERAL NOTES

- 1. Relays exhibit no contact chatter in excess of 10 μs or transfer in excess of 1 $\mu s.$
- 2. Contact resitance value applies to each closed contact as well as the bypass path.

©1997 TELEDYNE RELAYS 12525 Daphra Ave. Hawthorne, CA 90250 (213) 777-0077 WWW.DataStreet#U.com